百度Apollo推出大规模自动驾驶数据集

更新于 2018年3月10日 机器学习
我来说两句
wx:关注前沿科技   网页版 2018-03-09 21:48
会议活动 深度学习 视觉 算法 资源 自然语言处理 CVPR 行业动态 会议 活动 数据 语言学 智能汽车
「百度Apollo推出大规模自动驾驶数据集,将于CVPR发起挑战赛」百度Apollo,又搞了三个自动驾驶相关的新闻。 第一个,加入DeepDrive。美国时间西部时间3月8日,百度Apollo自动驾驶开放平台正式宣布加入加州大学伯克利DeepDrive深度学习自动驾驶产业联盟(Berkeley DeepDrive)。DeepDrive是由加州大学伯克利分校领导的研究应用于汽车领域的计算机视觉和机器学习前沿技术的产业联盟。包括了英伟达、高通、通用、福特等20家全球自动驾驶领域最为顶尖的企业,研究项目覆盖感知、规划决策、深度学习等自动驾驶关键领域。百度方面称,Apollo开放平台加入DeepDrive联盟,将与全球自动驾驶领先企业以及顶级学术研究机构携手,通过共享研究成果、交流经验,进一步壮大自动驾驶研发力量。百度副总裁,AI技术平台体系(AIG)总负责人、百度研究院院长王海峰表示:“百度和伯克利的合作,将依托Apollo开放平台的产业化资源和伯克利顶尖的学术团队,加快自动驾驶的技术创新、理论创新、以及落地应用的进程。” 同时,Apollo还献上了数据集大礼:开放ApolloScape大规模自动驾驶数据集。ApolloScape发布的整个数据集包含数十万帧逐像素语义分割标注的高分辨率图像数据,为便于研究人员更好的利用数据集的价值,在数据集中定义了共26个不同语义项的数据实例(例如汽车、自行车、行人、建筑、路灯等),并将进一步涵盖更复杂的环境、天气和交通状况等。百度Apollo如何自我评价这个数据集?规模上,ApolloScape“秒杀”了Cityscapes,比后者同类数据集大10倍以上。丰富性维度上,包括感知、仿真场景、路网数据等数十万帧逐像素语义分割标注的高分辨率图像数据,进一步涵盖更复杂的环境、天气和交通状况等。数据难度方面,ApolloScape数据集涵盖了更复杂的道路状况(例如,单张图像中多达162辆交通工具或80名行人),同时开放数据集采用了逐像素语义分割标注的方式,是目前环境最复杂、标注最精准、数据量最大的自动驾驶数据集。此外,ApolloScape还将进行更多关于仿真的前沿技术研究,目标是打造真实世界还原度最高、场景最丰富的仿真平台;现阶段,基于Apollo仿真平台,ApolloScape计划同时将数十辆自动驾驶车辆投入到同一个路网中行驶,可以模拟真实的复杂驾驶场景和多车博弈过程,是目前最先进的智能驾驶仿真技术之一可以帮助研发人员有效检验并优化预测、决策和路径规划等算法,显著提升自动驾驶的测试多样性。最后,百度Apollo还将在CVPR上发起任务挑战。Apollo将联合加州大学伯克利分校,在CVPR(IEEE国际计算机视觉与模式识别会议)期间联合举办自动驾驶研讨会(Workshop on Autonomous Driving),并将基于ApolloScape的大规模数据集定义了多项任务挑战,为全球自动驾驶开发者和研究人员提供共同探索前沿领域技术突破及应用创新的平台。相关赛程及研讨会信息请关注http://wad.ai/。 — 完 —加入社群量子位AI社群15群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot6入群;此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。进群请加小助手微信号qbitbot6,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)诚挚招聘量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。量子位 QbitAI · 头条号签约作者վ’ᴗ’ ի 追踪AI技术和产品新动态 via: http://mp.weixin.qq.com/s?__biz=MzIzNjc1NzUzMw==&mid=2247495291&idx=4&sn=da9b10544fe79b48a216d3ebaa9addcd&scene=0#wechat_redirect

 

回复